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The non-uniqueness of Zakharov’s kernel T (ka, kb, ka, kb) for gravity waves in water
of finite depth is resolved. This goal is achieved by the physical insight gained from
the study of the induced mean flow generated by two interacting wavetrains.

1. Introduction
Zakharov’s equation (Zakharov 1968; Zakharov & Kharitonov 1970; Lavrova 1983)

is the main existing model to study the temporal, weakly nonlinear, evolution of sea
states with a broad band of wavelengths and directions. Zakharov’s equation is
deterministic; i.e. no stochastic assumptions were made in the course of its derivation.
However, it is also a very convenient starting point for the derivation of Hasselmann’s
stochastic model (Hasselmann 1962; Herterich & Hasselmann 1980).

Zakharov’s equation was derived for any constant water depth, but most of its
applications, so far, have been for infinitely deep water. This may be due to the fact
that its kernel T (ka, kb, kc, kd), when kc = ka and kd = kb, is non-unique for water
of finite depth. This non-uniqueness disappears when the depth tends to infinity.
This apparent drawback was already discussed in Stiassnie & Shemer (1984) and in
Zakharov (1999) and was studied recently for the special case of T (ka, ka, ka, ka) by
Janssen & Onorato (2007).

It is important to note that any calculation of nonlinear interactions requires
specific values for kernels such as T (ka, kb, ka, kb), so that the current state of affairs
may hinder further progress.

The aim of this paper is to resolve the above-mentioned difficulty and to provide
specific values for T (ka, kb, ka, kb). Zakharov’s equation and its application to study
the interaction of two wavetrains is presented in § 2. Section 3 is devoted to Zakharov’s
kernel and its split into regular and singular (i.e. non-unique) parts. Section 4 deals
with the induced mean flow for the two-wavetrains problem and uses the mean flow
results to resolve the non-uniqueness of the kernel. Finally, some concluding remarks
are given in § 5.

2. Zakharov’s equation and the interaction of two waves
A generalized complex amplitude spectrum is determined from the Fourier

transform of the surface elevation η̂ and the Fourier transform of the velocity

† Email address for correspondence: miky@tx.technion.ac.il
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potential at the free surface φ̂s , by

β(k, t) =

(
g

2ω(k)

)1/2

η̂(k, t) + i

(
ω(k)

2g

)1/2

φ̂s(k, t), (2.1)

where the Fourier transform is given by

f̂ (k) =
1

2π

∫ ∞

−∞
f (x)e−ik·x dx. (2.2)

Here · denotes a scalar product; k = (kx, ky) is the wavenumber vector; x = (x, y) are
the horizontal space coordinates; and t is time. The function β is assumed to consist
of free dominant components B and less-dominating bound components B ′, . . . , such
that

β(k, t) = (B(k, t) + B ′(k, t) + · · · )e−iω(k)t . (2.3)

The slow temporal evolution of the free dominant components B of a weakly
nonlinear wave field is governed by Zakharov’s equation

i
∂B

∂t
=

∫∫∫
T (k, k1, k2, k3)B

∗
1B2B3δ(k + k1 − k2 − k3)e

i(ω+ω1−ω2−ω3)t dk1 dk2 dk3,

(2.4)

where ω is the angular frequency in water of constant depth h, given by the dispersion
relation

ω2 = gk tanh (kh), (2.5)

g being the acceleration due to gravity and k = |k| = (k2
x + k2

y)
1/2 being the length of

the wavenumber vector; i is the imaginary unit; Bj = B(kj , t) and ωj = ω(kj ). The
component B ′(k, t) can be found in Mei, Stiassnie & Yue (2005).

Consider the interaction of two weakly nonlinear wavetrains, denoted as a and b,
by taking

B(k, t) = Ba(t)δ(k − ka) + Bb(t)δ(k − kb). (2.6)

Substituting (2.6) into (2.4), gives

i
dBa

dt
=

{
T (ka, ka, ka, ka)|Ba |2 + [T (ka, kb, ka, kb) + T (ka, kb, kb, ka)] |Bb|2

}
Ba,

(2.7a)

i
dBb

dt
=

{
T (kb, kb, kb, kb)|Bb|2 + [T (kb, ka, kb, ka) + T (kb, ka, ka, kb)] |Ba|2

}
Bb.

(2.7b)

The solution of system (2.7) is given by

Ba(t) = Aa exp
{

−i
[
T (ka, ka, ka, ka)A

2
a + (T (ka, kb, ka, kb) + T (ka, kb, kb, ka))A

2
b

]
t
}
,

(2.8a)

Bb(t) = Ab exp
{

−i
[
T (kb, kb, kb, kb)A

2
b + (T (kb, ka, kb, ka) + T (kb, ka, ka, kb))A

2
a

]
t
}
.

(2.8b)

Substituting (2.6) and (2.8) into (2.3) and taking the inverse of (2.1) yields

η(x, t) = aa cos (ka · x − Ωat) + ab cos (kb · x − Ωbt). (2.9)
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In (2.9) aa and ab represent the amplitudes of the two wavetrains and are related to
the constants Aa and Ab by

Aa = 2π

(
g

2ωa

)1/2

aa, Ab = 2π

(
g

2ωb

)1/2

ab. (2.10)

The frequencies of the wavetrains are given by

Ωa = ωa + T (ka, ka, ka, ka)A
2
a + [T (ka, kb, ka, kb) + T (ka, kb, kb, ka)] A2

b, (2.11a)

Ωb = ωb + T (kb, kb, kb, kb)A
2
b + [T (kb, ka, kb, ka) + T (kb, ka, ka, kb)] A2

a. (2.11b)

In the following section, we provide the expression for Zakharov’s kernel T0,1,2,3 ≡
T (k0, k1, k2, k3) and demonstrate the non-uniqueness of Ta,a,a,a ≡ T (ka, ka, ka, ka)
and of Ta,b,a,b ≡ T (ka, kb, ka, kb) for water of finite and constant depth h.

3. Zakharov’s kernel
From (14.B.13) in Mei et al. (2005), one can show that

T0,1,2,3 = W0,1,2,3 − 2(A0,1,2,3 + B0,1,2,3 + C0,1,2,3), (3.1)

where

A0,1,2,3 =
V

(−)
3,3−1,1V

(−)
0,2,0−2

ω1−3 − ω3 + ω1

+
V

(−)
2,0,2−0V

(−)
1,1−3,3

ω1−3 − ω1 + ω3

, (3.2)

B0,1,2,3 =
V

(−)
2,2−1,1V

(−)
0,3,0−3

ω1−2 − ω2 + ω1

+
V

(−)
3,0,3−0V

(−)
1,1−2,2

ω1−2 − ω1 + ω2

, (3.3)

C0,1,2,3 =
V

(−)
0+1,0,1V

(−)
2+3,2,3

ω2+3 − ω2 − ω3

+
V

(+)
−2−3,2,3V

(+)
0,1−0−1

ω3+2 + ω2 + ω3

(3.4)

and

V
(±)
0,1,2 =

1

8π

{(
gω2

2ω0ω1

)1/2
[

k0 · k1 ±
(

ω0ω1

g

)2
]

+

(
gω1

2ω0ω2

)1/2

×
[

k0 · k2 ±
(

ω0ω2

g

)2
]

+

(
gω0

2ω1ω2

)1/2
[

k1 · k2 +

(
ω1ω2

g

)2
] }

, (3.5)

W0,1,2,3 = W̄−0,−1,2,3 + W̄2,3,−0,−1 − W̄2,−1,−0,3 − W̄−0,2,−1,3 − W̄−0,3,2,−1 − W̄3,−1,2,−0, (3.6)

W̄0,1,2,3 =
1

64π2

(
ω2ω3

ω0ω1

)1/2

k0k1

{
2k0 tanh (k1h) + 2k1 tanh (k0h)

− 1

g
tanh (k0h) tanh (k1h)

[
ω2

0+2 + ω2
0+3 + ω2

1+2 + ω2
1+3

]}
. (3.7)

The calculation of T (k0, k1, k2, k3) is straightforward except for the two special
cases T (ka, ka, ka, ka) and T (ka, kb, ka, kb). In order to calculate Ta,a,a,a and Ta,b,a,b,
one has to start from T (ka + κ3 + κ2 − κ1, ka + κ1, ka + κ2, ka + κ3) and T (ka +
κ3 + κ2 − κ1, kb + κ1, ka + κ2, kb + κ3) and let κ1, κ2 and κ3 tend to zero. This
elaborate small-perturbations approach is necessary, since some of the terms have
simultaneously vanishing numerators and denominators. Here and in the rest of
the paper, the regular/singular parts of the kernels are denoted by the superscripts
(R)/(S), respectively.
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For Ta,a,a,a the small-perturbations approach leads to

T (ka, ka, ka, ka) = T (R)(ka, ka, ka, ka) + T (S)(ka, ka, ka, ka), (3.8a)

where

T (R)
a,a,a,a = Wa,a,a,a − 2Ca,a,a,a =

k2
a

32π2gω6
a

(
9ω8

a − 10g2k2
aω

4
a + 9g4k4

a

)
(3.8b)

and

T (S)
a,a,a,a = −2 lim

κ3,κ2,κ1→0
{A(ka + κ3 + κ2 − κ1, ka + κ1, ka + κ2, ka + κ3)

+ B(ka + κ3 + κ2 − κ1, ka + κ1, ka + κ2, ka + κ3)}

= − g

32π2
lim

κ3,κ2,κ1→0

3∑
j=2

4

[
1+

Cga

kaωa

(
k2

a − ω4
a

g2

)][
ka · (κ j − κ1)

]2
+

(
k2

a − ω4
a

g2

)2
ω2

j−1

ω2
a

ω2
j−1 − [Cga · (κ j − κ1)]2

.

(3.8c)

In the above, Cg is the group velocity. Note that (3.8b) and (3.8c) are identical to
(3.9b) and (3.9c) in Stiassnie & Shemer (1984). To obtain Tb,b,b,b, one has to replace
ka by kb in (3.8). For Ta,b,a,b the small-perturbations approach leads to

T (ka, kb, ka, kb) = T (R)(ka, kb, ka, kb) + T (S)(ka, kb, ka, kb), (3.9a)

where

T
(R)
a,b,a,b = Wa,b,a,b − 2(Ba,b,a,b + Ca,b,a,b) =

g

32π2ωaωb

{
−2

ω2
aω

2
b

g2

(
k2

a + k2
b

)
+

1

ω2
a−b − (ωa − ωb)2

{[
ωb

(
k2

a − ka · kb

)
− ωa

(
k2

b − ka · kb

)]

×
[
−ωb

(
k2

a − 3ka · kb

)
+ ωa

(
k2

b − 3ka · kb

)
+ 2

ω2
aω

2
b

g2
(ωa − ωb)

]

−
[
(ka · kb)

2 + 2
ωaω

3
b

g2

(
k2

a − 2ka · kb

)
− 2

ω2
aω

2
b

g2

(
k2

a + k2
b − 3ka · kb

)
+ 2

ω3
aωb

g2

(
k2

b − 2ka · kb

)
+

ω2
aω

2
b

g4

(
ω2

a − ωaωb + ω2
b

)2
]
ω2

a−b

}

− 1

ω2
a+b − (ωa + ωb)2

{[
ωb

(
k2

a + ka · kb

)
+ ωa

(
k2

b + ka · kb

)]

×
[
ωb

(
k2

a + 3ka · kb

)
+ ωa

(
k2

b + 3ka · kb

)
+ 2

ω2
aω

2
b

g2
(ωa + ωb)

]

+
[
(ka · kb)

2 − 2
ωaω

3
b

g2

(
k2

a + 2ka · kb

)
− 2

ω2
aω

2
b

g2

(
k2

a + k2
b + 3ka · kb

)
− 2

ω3
aωb

g2

(
k2

b + 2ka · kb

)
+

ω2
aω

2
b

g4

(
ω2

a + ωaωb + ω2
b

)2
]
ω2

a+b

}}
(3.9b)
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and

T
(S)
a,b,a,b = −2 lim

κ3,κ2,κ1→0
A(ka + κ3 + κ2 − κ1, kb + κ1, ka + κ2, kb + κ3)

= − g

16π2
lim

κ3,κ1→0

1

ω2
3−1 − [Cgb · (κ3 − κ1)]

2

{ (
k2

a − ω4
a

g2

)(
k2

b − ω4
b

g2

)
ω2

3−1

2ωaωb

+

[
2 +

Cgb

kbωb

(
k2

b − ω4
b

g2

)]
[ka · (κ3 − κ1)] [kb · (κ3 − κ1)]

+
1

ωa

(
k2

a − ω4
a

g2

)
[Cgb · (κ3 − κ1)] [kb · (κ3 − κ1)]

}
. (3.9c)

For T
(S)
a,b,b,a one has to replace κ3 by κ2 in (3.9c). Note that T

(R)
b,a,b,a = T

(R)
a,b,a,b and that

for T
(S)
b,a,b,a , one needs to interchange a and b in (3.9c). For deep water, i.e. h → ∞, all

T (S) vanish.
Defining

cos θaj = lim
κ1,κj →0

ka · (κ j − κ1)

ka|κ j − κ1| , cos θbj = lim
κ1,κj →0

kb · (κ j − κ1)

kb|κ j − κ1| (3.10)

and noting that

lim
κ1,κj →0

ω2
j−1 = gh|κ j − κ1|2, (3.11)

(3.8c) and (3.9c) become

T (S)
a,a,a,a = − g

32π2

3∑
j=2

4k2
a

[
1 +

Cga

kaωa

(
k2

a − ω4
a

g2

)]
cos2 θaj +

(
k2

a − ω4
a

g2

)2
gh

ω2
a

gh − Cg2
a cos2 θaj

(3.12)

and

T
(S)
a,b,a,b = − g

16π2(gh − Cg2
b cos2 θb3)

{ (
k2

a − ω4
a

g2

)(
k2

b − ω4
b

g2

)
gh

2ωaωb

+ kakb

[
2 +

Cgb

kbωb

(
k2

b − ω4
b

g2

)]
cos θa3 cos θb3 +

Cgbkb

ωa

(
k2

a − ω4
a

g2

)
cos2 θb3

}
.

(3.13)

Note the non-unique nature of the singular kernels, whose values depend on the
directions of approach to zero. For strictly two-dimensional motion the choice of θaj

and θbj is limited to the two values 0 or π. In this case cos2 θaj = cos2 θbj = 1 and
cos θa3 cos θb3 = 1 if ka and kb are collinear and −1 if ka and kb point in opposite
directions. Thus for two-dimensional motion the non-uniqueness problem is easily
resolved. For the more general case of three-dimensional motion however, additional
arguments must be employed in order to resolve the non-uniqueness. In the following
section, the induced mean flow is introduced and used to choose appropriate values
for θaj and θbj .



438 M. Stiassnie and O. Gramstad

4. The induced mean flow and the main results
Starting from B ′ given in (14.3.3) of Mei et al. (2005), one can calculate the potential

of the induced mean flow produced by a narrow spectrum centred around, say, ka:

φ̄a(x, z, t) =
ig

8π2

∫∫
cosh [|κ2 − κ1|(h + z)]

cosh [|κ2 − κ1|h]
B∗(ka + κ1)B(ka + κ2)

×

1

ωa

[Cga · (κ2 − κ1)]

(
k2

a − ω4
a

g2

)
+2[ka·(κ2 − κ1)]

ω2
2−1 − [Cga · (κ2 − κ1)]2

ei(κ2−κ1)·(x−Cgat) dκ2 dκ1.

(4.1)

Similarly one can find the mean free surface η̄a:

η̄a(x, t) = − 1

8π2

∫∫
B∗(ka + κ1)B(ka + κ2)e

i(κ2−κ1)·(x−Cgat)

×
2[Cga · (κ2 − κ1)][ka · (κ2 − κ1)] +

ω2
2−1

ωa

(
k2

a − ω4
a

g2

)
ω2

2−1 − [Cga · (κ2 − κ1)]2
dκ2 dκ1. (4.2)

From (4.1), the induced current at z = 0, ua , is given by

ua(x, t) = − g

8π2

∫∫
B∗(ka + κ1)B(ka + κ2)e

i(κ2−κ1)·(x−Cgat)

×

1

ωa

[Cga · (κ2 − κ1)]

(
k2

a − ω4
a

g2

)
+ 2[ka · (κ2 − κ1)]

ω2
2−1 − [Cga · (κ2 − κ1)]2

(κ2 − κ1) dκ2 dκ1. (4.3)

For a single wavetrain one has B(ka + κ j ) = Ba(t)δ(κ j ), which when substituted into
(4.2) and (4.3) produces

ua = −gkaA
2
a

8π2

[
Cga

kaωa

(
k2

a − ω4
a

g2

)
+ 2

]
cos θa2

gh − Cg2
a cos2 θa2

lim
κ1,κ2→0

κ2 − κ1

|κ2 − κ1| (4.4)

and

η̄a = − A2
a

8π2

2Cgaka cos2 θa2 +
gh

ωa

(
k2

a − ω4
a

g2

)
gh − Cg2

a cos2 θa2

, (4.5)

where θa2 is defined in (3.10). Similar expressions exist for ub and η̄b.
From (3.12), (4.4) and (4.5), one can see that

T (S)
a,a,a,aA

2
a = ka · ua +

g

2ωa

(
k2

a − ω4
a

g2

)
η̄a. (4.6)

Similarly from (3.13), (4.4) and (4.5), one gets

[
T

(S)
a,b,a,b + T

(S)
a,b,b,a

]
A2

b = ka · ub +
g

2ωa

(
k2

a − ω4
a

g2

)
η̄b. (4.7)
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Substituting (4.6) and (4.7) into (2.11a) gives

Ωa = ωa + T (R)
a,a,a,aA

2
a + 2T

(R)
a,b,a,bA

2
b + ka · (ua + ub) +

g

2ωa

(
k2

a − ω4
a

g2

)
(η̄a + η̄b). (4.8)

Note that the contributions of the wave kb and both its induced mean flow ub and
its mean elevation η̄b appear in (4.8) in a somewhat expected and rather symmetric
fashion. For a single wavetrain, say a, one would expect the induced flow to be
collinear with ka; i.e. all κ j must be parallel to ka . This is equivalent to the choice
cos θaj = 1 in (4.4) and (4.5), which then reduce to

ua = −gkaA
2
a

8π2

[
Cga

kaωa

(
k2

a − ω4
a

g2

)
+ 2

]
gh − Cg2

a

, (4.9a)

η̄a = − A2
a

8π2

2Cgaka +
gh

ωa

(
k2

a − ω4
a

g2

)
gh − Cg2

a

. (4.9b)

One can show that ua , η̄a in (4.9) are identical to β , b in (16.99) of Whitham (1974).
Moreover, for a single wavetrain, (4.8), with the above ua , η̄a , becomes identical to
(16.103) in Whitham (1974).

Introducing cos θaj = 1 into (3.12) gives

T (S)
a,a,a,a = − g

16π2

4k2
a

[
1 +

Cga

kaωa

(
k2

a − ω4
a

g2

)]
+

(
k2

a − ω4
a

g2

)
gh

ω2
a

gh − Cg2
a

. (4.10)

Similarly, one would expect ub to be collinear with kb, leading to cos θb3 = 1 in (3.13);
θb3 = 0 together with (3.10) leads to θa3 = θab, where θab is the angle between ka and
kb. With these (3.13) takes the form

T
(S)
a,b,a,b = − g

16π2
(
gh − Cg2

b

){(
k2

a − ω4
a

g2

)(
k2

b − ω4
b

g2

)
gh

2ωaωb

+ kakb

[
2 +

Cgb

kbωb

(
k2

b − ω4
b

g2

)]
cos θab +

Cgbkb

ωa

(
k2

a − ω4
a

g2

)}
. (4.11)

Equations (4.10) and (4.11) are the main results and goal of this paper; together with
T (R)

a,a,a,a and T
(R)
a,b,a,b (see (3.8b) and (3.9b)) and T

(S)
a,b,a,b = T

(S)
a,b,b,a , they provide explicit

expressions for Zakharov’s kernels Ta,a,a,a and Ta,b,a,b in water of finite depth. Note
that the resulting expression for Ta,a,a,a is identical to (3.4) in Janssen & Onorato
(2007). However, expression (4.11), to the best of our knowledge, is new.

In the case of infinite depth, kh → ∞, the induced mean flow and the mean surface
vanish; so do T (S)

a,a,a,a and T
(S)
a,b,a,b. In this case it can be shown that the nonlinear

dispersion relation (4.8) with the deep-water limits of T (R)
a,a,a,a and T

(R)
a,b,a,b corresponds

to the results of Longuet-Higgins & Phillips (1962), except for a misprint which was
corrected by Hogan, Gruman & Stiassnie (1988).

Recently Madsen & Fuhrman (2006) also considered the interaction of non-
collinear, bichromatic waves in finite depth. In their (42) they provide an expression
for the nonlinear dispersion relation which is identical to (4.8) when setting their
current equal to the induced mean flow, i.e. U = ua + ub, and assuming zero mean
free surface η̄a = η̄b = 0 in our (4.8). Thus, our results for the regular parts of the
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kernel, T (R)
a,a,a,a and T

(R)
a,b,a,b given in (3.8b) and (3.9b), confirm the results of Madsen &

Fuhrman (2006). However, the contributions from the singular parts T (S)
a,a,a,a and T

(S)
a,b,a,b

do not appear in Madsen & Fuhrman (2006). This is due to their a priori assumption
of zero mean free surface and their choice of zero net volume flux. Note also that
for a uniform wavetrain there is always the possibility to change the mean current
and mean surface by an addition of a free mode with k = 0 (see the Appendix).
However, when considering the uniform wave as a limit of a finite wave packet,
ignoring any homogeneous solution of the mean flow problem, as is the case in
the present paper, the induced current and mean surface take the forms given in
(4.9). Identical expressions for the induced current and surface appear in Longuet-
Higgins & Stewart (1962), in Whitham (1974) and more recently in Knobloch &
Pierce (1998) who showed that these expressions arise from the equations of Davey &
Stewartson (1974).

5. Concluding remarks
The derivations in this paper are based on the kernel in Mei et al. (2005), which

has its roots in Stiassnie & Shemer (1984), who have based their approach on
Yuen & Lake (1982) as well as on Zakharov & Kharitonov (1970) and Zakharov
(1968). Stiassnie & Shemer (1987) performed energy calculations with the Zakharov
and modified Zakharov equations and showed that the Hamiltonian of the wave
fields considered remains nearly constant throughout the evolution. On this basis,
they concluded that the Zakharov and modified Zakharov equations represent
consistent approximations of the original water-wave problem. Krasitskii (1994)
obtained improved kernels, which enable the conservation of energy by the Zakharov
equation itself. The functional relations between our kernel and that of Krasitskii
(1994) are discussed in Mei et al. (2005), where it is shown that they are expected to
be equal for exact resonance conditions.

Indeed T
(R)
a,b,a,b in (3.9a) is exactly the same as the one that could be obtained from

Krasitskii (1994) or from (11) in Janssen & Onorato (2007) and agrees with the result
by Madsen & Fuhrman (2006).

Using the notation of (3.10) the singular part of Krasitskii’s kernel turns out to be

T
(S)
a,b,a,b = − g

32π2(gh − Cg2
b cos2 θb3)

{(
k2

a − ω4
a

g2

)(
k2

b − ω4
b

g2

)
gh

2ωaωb

+ kakb

[
2 +

Cgb

kbωb

(
k2

b − ω4
b

g2

)]
cos θa3 cos θb3 +

Cgbkb

ωa

(
k2

a − ω4
a

g2

)
cos2 θb3

}

− g

32π2(gh − Cg2
a cos2 θa2)

{(
k2

a − ω4
a

g2

)(
k2

b − ω4
b

g2

)
gh

2ωaωb

+ kakb

[
2 +

Cga

kaωa

(
k2

a − ω4
a

g2

)]
cos θa2 cos θb2 +

Cgaka

ωb

(
k2

b − ω4
b

g2

)
cos2 θa2

}
.

(5.1)

All our attempts to express (5.1) in terms of ub and η̄b, as we have done with our
kernel (4.7), have failed.

Geometrical constraints in some practical applications would require to introduce
an additional small uniform current U and a small additional change N in the mean
free surface as a free mode (in contrast to (ua , η̄a), (ub, η̄b) which are induced by the
waves ka , kb respectively). One can show (see the Appendix for details) that such a



Zakharov’s kernel and the interaction of wavetrains in finite water depth 441

free mode interacts with ka (and kb) in a triad interaction, which results in replacing
(ua + ub) and (η̄a + η̄b) in (4.8) by (ua + ub + U) and (η̄a + η̄b + N), respectively.

This research was supported by the US–Israel Binational Science Foundation (grant
no. 2004-205) and by the Israel Science Foundation (grant no. 1194/07).

Appendix. Triad interaction with an infinitely long wave
A constant change in mean surface and a uniform current can be described by

the surface elevation ηl = N and velocity potential φl = U · x, where N and U are
constants. In the context of the Zakharov equation this may be represented as a
‘wave’ with the wavenumber vector k = 0. By using (2.2), one can find the Fourier
transforms of φl and ηl as

φ̂l(k) = 2πi[Uxδ
′(kx)δ(ky) + Uyδ(kx)δ

′(ky)], η̂l(k) = 2πNδ(k), (A 1)

where δ′(k) is the derivative of the Dirac δ function.
In the derivation of the Zakharov equation for gravity waves it is assumed that

there is no resonant triad interaction. Hence, triad interactions are removed from
the evolution equation by a transformation and appear only in the expressions for
bound waves. However, if one accounts for an infinitely long wave, resonant triad
interactions are present. By including the possibility of resonant triad interaction in
the Zakharov equation one obtains (see e.g. (2.21) in Krasitskii 1994)

i
∂b

∂t
− ω(k)b =

∫∫
V

(−)
0,1,2b1b2δ(k − k1 − k2) dk1dk2

+ 2

∫∫
V

(−)
2,1,0b

∗
1b2δ(k + k1 − k2) dk1dk2, (A 2)

where the standard cubic term has been omitted. Here b(k, t) = B(k, t)e−iωt , where
B(k, t) is defined in (2.3). We now make use of (2.1) and write b(k, t) as a sum of a
wavetrain with wavenumber vector ka and an infinitely long wave as given in (A 1):

b(k, t) = Ba(t)e
−iωat δ(k − ka) +

√
g

2ω
η̂l + i

√
ω

2g
φ̂l. (A 3)

Introducing this into (A 2) gives

i
dBa

dt
= 2Ba

∫
S(1)(k1)η̂

l
1 + iS(2)(k1)φ̂

l
1 dk1, (A 4)

where

S(1)(k) =

√
g

2ω(k)

[
V (−)(ka + k, k, ka) + V (−)(ka, −k, ka + k)

]
, (A 5a)

S(2)(k) =

√
ω(k)

2g

[
V (−)(ka + k, k, ka) − V (−)(ka, −k, ka + k)

]
. (A 5b)

Substituting (A 1) into (A 4) and integrating give

i
dBa

dt
= 4πBaNS(1)(0) + 4πBaUx

∂S(2)(k)

∂kx

∣∣∣∣
k=0

+ 4πBaUy

∂S(2)(k)

∂ky

∣∣∣∣
k=0

. (A 6)
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Finally, by using (3.5) and solving (A 6), one obtains a frequency correction having
the same structure as (4.8), i.e.

Ba(t) = Aa exp

[
−i(ka · U +

g

2ωa

(
k2

a − ω4
a

g2

)
N)

]
. (A 7)
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